
6.5.1. Motivation. Figure 6.1 is a sketch of a scheme X. We see two connected com-
ponents, and three irreducible components. The irreducible components of X have
dimensions 2, 1, and 1, although we won’t be able to make sense of “dimension”
until Chapter 12. Both connected components are nonreduced.

We see a little more in this picture, which we will make precise in this section,
in terms of “associated points”. The reducible connected component seems to have
different amounts of nonreduced behavior on different loci. The scheme X has six
associated points, which are the generic points of the irreducible subsets “visible”
in the picture. A function on X is a zerodivisor if its zero locus contains any of
these six irreducible subvarieties.

FIGURE 6.1. This scheme has six associated points, of which
three are embedded points. A function is a zerodivisor if it van-
ishes at any of these six points.

Suppose M is a finitely generated module over a Noetherian ring A. For ex-
ample, M could be A itself. Then there are some special points of SpecA that
are particularly crucial to understanding M. These are the associated points of M
(or equivalently, the associated prime ideals of M — we will use these terms inter-
changeably). As motivation, we give a zillion properties of associated points, and
leave it to you to verify them from the theory developed in the rest of this section

As you read this section, you may wish to keep in mind

M = A = k[x, y]/(y2, xy)

(Figure 4.4) as a running example.

6.5.2. A zillion properties of associated points. Here are some of the properties
of associated points that we will prove.

There are finitely many associated points AssA M ⊂ SpecA.
The support of M is the closure of the associated points of M: SuppM =

AssA M. The support of any submodule of M is the closure of some subset of the
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associated points of M. The support of any element of M is the closure of some
subset of the associated points.

The associated points are precisely the generic points of irreducible compo-
nents of Suppm for all m ∈ M. The associated points are precisely the generic
points of those Suppm which are irreducible. The associated primes are precisely
those prime ideals that are annihilators of some element of M.

Taking “associated points” commutes with localization. Hence this notion is
“geometric in nature”, which will (in §6.5.2) allow us to extend the notion to coher-
ent sheaves on locally Noetherian schemes.

Associated points behave fairly well in exact sequences. For example, the asso-
ciated points of a submodule are a subset of the associated points of the module.

If I ⊂ A is an ideal, the associated primes p of A/I are precisely those p such
that a p-primary ideal appears in the primary decomposition of I.

We will repeatedly use the fact that an element of A is a zerodivisor if and only if
it vanishes at an associated point.

An element of A is a unit if and only if it vanishes at no associated point . An
element of A is nilpotent if and only if it vanishes at every associated point.

The locus of points [p] of SpecA where the stalk Ap is nonreduced is the closure
of some subset of the associated points.

An associated point that is in the closure of another associated point is said
to be an embedded point. If A is reduced, then SpecA has no embedded points.
Hypersurfaces in An

k have no embedded points. We will later see that complete
intersections have no embedded points (§29.2.7).

Elements of M are determined by their localization at the associated points.
Sections of the corresponding sheaf M̃ (Exercise/Definition 4.1.D) are determined
by their germs at the associated points.

This discussion immediately implies a notion of associated point for a coher-
ent sheaf on a locally Noetherian scheme, with all the good properties described
here. The phrase associated point of a locally Noetherian scheme X (without ex-
plicit mention of a coherent sheaf) means “associated point of OX”, and similarly
for embedded oints.
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