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By the Affine Communication Lemma 5.3.2, and Exercises 6.4.A, 6.4.B, and 6.4.C,
it suffices to check “finite typeness” (resp. finite presentation, coherence) on the
open sets in a single affine cover.

6.4.6. Warning. It is not uncommon in the later literature to incorrectly define
coherent as finitely generated. Please only use the correct definition, as the wrong
definition causes confusion. Besides doing this for the reason of honesty, it will
also help you see what hypotheses are actually necessary to prove things. And
that always helps you remember what the proofs are — and hence why things are
true.

6.4.7. Why coherence? Proposition 6.4.3 is a good motivation for the definition of
coherence: it gives a small (in a non-technical sense) abelian category in which we
can think about vector bundles.

There are two sorts of people who should care about the details of this defi-
nition, rather than living in a Noetherian world where coherent means finite type.
Complex geometers should care. They consider complex-analytic spaces with the
classical topology. One can define the notion of coherent OX-module in a way
analogous to this (see [Se1, Def. 2]). Then Oka’s Theorem states that the structure
sheaf of Cn (hence of any complex manifold) is coherent, and this is very hard (see
[GR, §2.5] or [Rem, §7.2]).

The second sort of people who should care are the sort of arithmetic people
who may need to work with non-Noetherian rings, see §3.6.21, or work in non-
archimedean analytic geometry.

6.4.8. !! Coherence is not a good notion in smooth geometry. The following exam-
ple from B. Conrad shows that in quite reasonable (but less “rigid”) situations, the
structure sheaf is not coherent over itself. Consider the ring O0 of germs of smooth
(C∞) functions at 0 ∈ R, with coordinate x. Now O0 is a local ring. Its maximal
ideal m is generated by x. (Key idea: suppose f ∈ m, and suppose f has a represen-
tative defined on (ε, ε). Then for t ∈ (−ε, ε), f(t) =

∫t
0 f

′(u) du = t
∫1
0 f

′(tv) dv. By
“differentiating under the integral sign” repeatedly, we may check that

∫1
0 f

′(tv) dv
is smooth. We deal with the case t = 0 separately as usual.)

Let φ ∈ O0 be the germ of a smooth function that is 0 for x ≤ 0, and positive
for x > 0 (such as φ(x) = e−1/x2

for x > 0). Consider the map ×φ : O0 → O0. The
kernel is the ideal Iφ of functions vanishing for x ≥ 0. Clearly Iφ is nonzero (for
example, φ(−x) ∈ Iφ), but as m = (x), Iφ = xIφ, so Iφ cannot be finitely generated
or else Nakayama’s Lemma 8.2.9 would be contradicted. (Essentially the same
argument shows that the sheaf of smooth functions on R is not coherent.) This is
why coherentce has no useful meaning for smooth manifolds.

6.5 Visualizing schemes: Associated points and zerodivisors

The associated points of a module refine the notion of support (§4.1.7). They will
help us understand and visualize nilpotents, and generalize the notion of “ratio-
nal functions” to non-integral schemes. They are useful in ways we won’t use, for
example through their connection to primary decomposition. They might be most
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useful for us in helping us understand and visualize (non-)zerodivisors, which
will come up repeatedly, through effective Cartier divisors and line bundles, regu-
lar sequences, depth and Cohen-Macaulayness, and more.

There is no particular reason to discuss associated points now, and this sec-
tion can be read independently, at leisure. We will not need this material in any
essential way for some time, but it is a good opportunity to practice visualizing
geometry, and to learn some useful algebra.

6.5.1. Motivation. Figure 6.1 is a sketch of a scheme X. We see two connected com-
ponents, and three irreducible components. The irreducible components of X have
dimensions 2, 1, and 1, although we won’t be able to make sense of “dimension”
until Chapter 12. Both connected components are nonreduced.

We see a little more in this picture, which we will make precise in this section,
in terms of “associated points”. The reducible connected component seems to have
different amounts of nonreduced behavior on different loci. The scheme X has six
associated points, which are the generic points of the irreducible subsets “visible”
in the picture. A function on X is a zerodivisor if its zero locus contains any of
these six irreducible subvarieties.

FIGURE 6.1. This scheme has six associated points, of which
three are embedded points. A function is a zerodivisor if it van-
ishes at any of these six points.

Suppose M is a finitely generated module over a Noetherian ring A. For ex-
ample, M could be A itself. Then there are some special points of SpecA that
are particularly crucial to understanding M. These are the associated points of M
(or equivalently, the associated prime ideals of M — we will use these terms inter-
changeably). As motivation, we give a zillion properties of associated points, and
leave it to you to verify them from the theory developed in the rest of this section

As you read this section, you may wish to keep in mind

M = A = k[x, y]/(y2, xy)

(Figure 4.4) as a running example.

6.5.2. A zillion properties of associated points. Here are some of the properties
of associated points that we will prove.

There are finitely many associated points AssA M ⊂ SpecA.
The support of M is the closure of the associated points of M: SuppM =

AssA M. The support of any submodule of M is the closure of some subset of the
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associated points of M. The support of any element of M is the closure of some
subset of the associated points.

The associated points are precisely the generic points of irreducible compo-
nents of Suppm for all m ∈ M. The associated points are precisely the generic
points of those Suppm which are irreducible. The associated primes are precisely
those prime ideals that are annihilators of some element of M.

Taking “associated points” commutes with localization. Hence this notion is
“geometric in nature”, which will (in §6.5.2) allow us to extend the notion to coher-
ent sheaves on locally Noetherian schemes.

Associated points behave fairly well in exact sequences. For example, the asso-
ciated points of a submodule are a subset of the associated points of the module.

If I ⊂ A is an ideal, the associated primes p of A/I are precisely those p such
that a p-primary ideal appears in the primary decomposition of I.

We will repeatedly use the fact that an element of A is a zerodivisor if and only if
it vanishes at an associated point.

An element of A is a unit if and only if it vanishes at no associated point . An
element of A is nilpotent if and only if it vanishes at every associated point.

The locus of points [p] of SpecA where the stalk Ap is nonreduced is the closure
of some subset of the associated points.

An associated point that is in the closure of another associated point is said
to be an embedded point. If A is reduced, then SpecA has no embedded points.
Hypersurfaces in An

k have no embedded points. We will later see that complete
intersections have no embedded points (§29.2.7).

Elements of M are determined by their localization at the associated points.
Sections of the corresponding sheaf M̃ (Exercise/Definition 4.1.D) are determined
by their germs at the associated points.

This discussion immediately implies a notion of associated point for a coher-
ent sheaf on a locally Noetherian scheme, with all the good properties described
here. The phrase associated point of a locally Noetherian scheme X (without ex-
plicit mention of a coherent sheaf) means “associated point of OX”, and similarly
for embedded points.

We now establish these zillion facts.

6.5.3. More on the notion of support.
The notion of associated points of an A-module M refines the notion of support

(in the case where M is finitely generated over a Noetherian ring A). (In what fol-
lows, we make no assumptions that A is Noetherian or that M is finitely generated
until we need to.) To set this up, recall (§4.1.7) that the support of m ∈ M,

Suppm = {[p] ∈ SpecA : mp &= 0},

is a closed subset, and thus of the form V(I) for some I. Exercise 6.5.A gives the
“best such” I. Define the annihilator ideal AnnA m ⊂ A of an element m of an
A-module M by:

AnnA m := {a ∈ A : am = 0} = ker(A ×m−−→M).

The subscript A is omitted if it is clear from context.

6.5.A. EASY IMPORTANT EXERCISE. Show that Suppm = V(Annm).
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Recall (Definition 2.7.6) that

Supp M̃ = {p ∈ SpecA : M̃p &= 0},

and the analogous Definition 4.1.7 of the support of the module M,

(6.5.3.1) SuppM := {p ∈ SpecA : Mp &= 0},

so SuppM = Supp M̃. If M is a principal module generated by m ∈ M, then

SuppM = SuppAm = Suppm = V(Annm).

The notions of support and associated points behave well in exact sequences,
and under localization. We begin to explain this now.

6.5.4. The notion of support behaves well in exact sequences.

6.5.B. EXERCISE. Suppose that 0→M ′ →M→M ′′ → 0 is a short exact sequence
of A-modules.

(a) Show that SuppM = SuppM ′ ∪ SuppM ′′.
(b) Show that if M is a finitely generated module, then SuppM is a closed

subset of SpecA. (Hint: induction on the number of generators.)
Warning: SuppM need not be closed in general; consider A = Z and M =

⊕p primeZ/(p).

6.5.C. EXERCISE. Suppose M is a finitely generated A-module, and x ∈ A has
value 0 at all the points of SuppM, i.e., x is contained in all of the primes where
M is supported. Show that some power xn of x annihilates every element of M.
(Hint: annihilate a generating set.)

6.5.5. Definition: Associated points and associated primes.
Define the associated prime ideals of an A-module M to be those prime ideals

of A of the form AnnA(m) for some m ∈ M. Define the associated points of M to
be the corresponding points of SpecA; we use the terminology “associated points”
and “associated primes” interchangeably. The set of associated points is denoted
AssA M ⊂ SpecA. The subscript A is dropped if it is clear from the context. (To
help remember the definition and the notation, some call these the assassins, as
they are the primes that can ruthlessly annihilate elements of the module, without
remorse. But we will not use this term.)

6.5.6. The associated primes of a ring A are the associated primes of A considered
as an A-module (i.e., M = A).

6.5.D. EASY EXERCISE (ASSOCIATED POINTS OF INTEGRAL DOMAINS). If A is an
integral domain, show that AssA = {[(0)]} — the zero ideal is the only associated
prime.

6.5.E. EXERCISE (ASSOCIATED POINTS OF HYPERSURFACES). Given f ∈ k[x1, . . . , xn],
show that the associated primes of k[x1, . . . , xn]/(f) are those principal ideals gen-
erated by the prime factors of f. (Your argument will apply more generally to any
f ∈ A where A is a Unique Factorization Domain.)

6.5.7. The observation that [p] ∈ AssA(M) if and only if there is an injection A/p ↪→M
of A-modules will be essential. The next two exercises might drive this home.
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6.5.F. EXERCISE. Suppose M ′ ⊂ M. Show that AssM ′ ⊂ AssM.

The corresponding statement for “support” is implicit in Exercise 6.5.B(a).

6.5.G. EXERCISE. Show that AssM ⊂ SuppM.

If M is finitely generated, then SuppM is closed (Exercise 6.5.B), so AssM ⊂
SuppM. Equality will be shown in Proposition 6.5.24, when A is Noetherian.

6.5.8. Nonzero modules over Noetherian rings have associated points.
Suppose m is a nonzero element of an A-module M. Observe that for any

nonzero multiple xm of m, Annm ⊆ Ann xm ! A.

6.5.H. EXERCISE. Suppose A is Noetherian. Show that there is some multiple
n = xm such that any nonzero multiple yn &= 0 of n satisfies Annyn = Annn.

6.5.9. Proposition. — Continuing the notation of the previous exercise, we have that
Annn is a prime ideal.

Proof. Suppose ab ∈ Annn, so abn = 0. Then either bn = 0 (in which case
b ∈ Annn), or else a ∈ Annbn = Annn. !

We have thus proved the following.

6.5.10. Proposition (nonzero modules over Noetherian rings have associated
primes). — If M is a nonzero module over a Noetherian ring A, then AssA M is
nonempty. More precisely, for any m &= 0 in M, there is an associated prime p containing
Annm, and p = Ann xm for some x ∈ A.

6.5.11. Localizations at the associated primes.
Recall the useful fact that M →

∏
p∈Spec A Mp is an injection (Exercise 4.1.F).

Our current situation is much better: we can take the product over only the local-
ization at associated primes.

6.5.I. EXERCISE. Suppose M is a module over a Noetherian ring A. Show that the
natural map

(6.5.11.1) M !!
∏

p∈Ass M Mp

is an injection. Hint: if the kernel K is nonzero, then K has an associated prime p,
which is the annihilator of some m ∈ K ⊂ M, and m is nonzero in Mp.

Clearly we need only the maximal among the associated primes in (6.5.11.1).

6.5.12. Zerodivisors = elements of associated primes.

6.5.13. Proposition. — Suppose f ∈ A, with A Noetherian. Then f is a zerodivisor on
M if and only if f vanishes at an associated point of M. Translation: the set of zerodivisors
is the union of the associated prime ideals.

Again, we need only the maximal among the associated primes. For example,
if (A,m) is a local ring, then m is an associated prime if and only if every element
of m is a zerodivisor.
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Proof. Suppose f vanishes at an associated point [p] of M. Choose m with Annm =
p. Then fm = 0 while m &= 0, so f is a zerodivisor.

Conversely, if f is vanishes at no associated point, consider the commuting
diagram

M

×f

""

! " !!
∏

p∈Ass M Mp

×f

""
M ! " !!

∏
p∈Ass M Mp,

where the rows are the maps of (6.5.11.1). The vertical arrow on the right (multi-
plication by f) is an injection by hypothesis, so the vertical arrow on the left must
be an injection as well. !

6.5.14. Associated points behave fairly well in exact sequences.

6.5.15. Proposition. — Suppose

(6.5.15.1) 0 !! M ′ !! M !! M ′′ !! 0

is a short exact sequence of A-modules. Then

(6.5.15.2) AssM ′ ⊂ AssM ⊂ AssM ′ ∪ AssM ′′.

We come to our first complicated proof of the section.

Proof. The first inclusion of (6.5.15.2) was shown in Exercise 6.5.F.
Suppose next that [p] ∈ AssM, so there is some m ∈ M with Annm = p. We

wish to find a submodule of M ′ or M ′′ isomorphic to A/p. If this proposition were
true, we would expect to find such a submodule in the “part of (6.5.15.1) spanned
by m”. So we consider instead the exact sequence

0 !! Am ∩M ′ !! Am !! Am/(Am ∩M ′) !! 0,

noting that the three modules appearing here are submodules of the correspond-
ing modules in (6.5.15.1). So by Exercise 6.5.F it suffices to prove the result in this
“special case”, which can be rewritten as

0 !! I/p !! A/p !! A/I !! 0

where I is the annihilater of m considered as an element of the module Am/(Am∩
M ′). For convenience, let B = A/p (an integral domain), so we rewrite the exact
sequence further as the top row of

0 !! J " #

""

!! B !!" #

""

B/J !!
" #

""

0

0 !! M ′ !! M !! M ′′ !! 0

Now localize the top row of B-modules at (0) ⊂ B, so it becomes an exact se-
quence of vector spaces over the fraction field K(B), and the central element is
one-dimensional:

0→ J⊗ K(B)→ K(B)→ (B/J)⊗ K(B)→ 0.



July 15, 2022 draft 183

Thus one of the outside terms J ⊗ K(B) and (B/J) ⊗ K(B) has a nonzero element,
which (tracing our argument backwards) gives an element of M ′ or M ′′ whose
annihilator is precisely p. !

6.5.16. Cautionary example. The short exact sequence of Z-modules

0 !! Z ×2−−→ Z !! Z/2 !! 0

(and Easy Exercise 6.5.D) shows it is not always true that AssM = AssM ′ ∪
AssM ′′. However, sometimes we can still ensure some associated primes of M ′′

lift to associated primes of M, as we shall see in §6.5.20.

6.5.17. Finitely generated modules over Noetherian rings have finitely many
associated points/primes.

6.5.J. IMPORTANT EXERCISE. Suppose that M is a finitely generated module over
a Noetherian ring A. Show that M has a (finite) filtration
(6.5.17.1)
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M where Mi+1/Mi

∼= A/pi for some prime pi.

Hint: Build (6.5.17.1) inductively from left to right, using Proposition 6.5.10, and
show the process terminates.

6.5.K. EXERCISE. Suppose an A-module M has a finite filtration (6.5.17.1), with
no assumptions of finite generation or Noetherianity. Show that every associated
prime of M appears as one of the pi. In particular, under this hypothesis (for
example, if M is finitely generated over a Noetherian ring) M has finitely many
associated points/primes. (Hint: Exercise 6.5.D and Proposition 6.5.15.)

6.5.18. Caution: Non-associated prime ideals may unavoidably appear among the quo-
tients in (6.5.17.1). Example 6.5.16 shows that the non-associated prime ideals may
be among the quotients in (6.5.17.1), although in that case it is because the filtration
was chosen unwisely. But better choices will not always remedy the problem:

6.5.L. EXERCISE. Consider the module M = (x, y) ⊂ A = k[x, y] over the ring A.
Show that any filtration (6.5.17.1) of M contains a quotient A/pi where pi is not an
associated prime.

6.5.19. Remark. However, not all is lost: Exercise 6.5.P will show that for any
quotient A/pi in any filtration (6.5.17.1) of M, pi must contain an associated prime
of M.

6.5.20. Associated points behave fairly well in exact sequences, continued.

6.5.21. Proposition. — We continue to consider the short exact sequence

0 !! M ′ !! M !! M ′′ !! 0

of A-modules. Suppose p ∈ AssM ′′, but p /∈ SuppM ′ (a stronger hypothesis than
p /∈ AssM ′). Then p ∈ AssM.

We come to our second complicated proof of the section.
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Proof. Choose m ′′ ∈ M ′′ with p = Annm ′′ in M ′′. Choose a lift of m ∈ M of
m ′′ ∈ M ′′. We apply a strategy similar to that of our proof of Proposition 6.5.15.
Consider the “inclusion of short exact sequences”

0 !! ker (Am→ Am ′′) !!
" #

""

Am !!" #

""

Am ′′ !!" #

""

0

0 !! M ′ !! M !! M ′′ !! 0.

As Supp(ker(Am → Am ′′)) ⊂ SuppM ′, Ass(Am) ⊂ AssM, and Ass(Am ′′) ⊂
AssM ′′ (Exercises 6.5.B(a) and 6.5.F), we have reduced to considering the top row
instead of the bottom row. The top row can be conveniently rewritten as

0 !! p/I !! A/I !! A/p !! 0

(here I = Ann(m)) where our hypothesis translates to [p] /∈ Supp(p/I). For conve-
nience, let B = A/I so we may now consider the sequence

0 !! q !! B !! B/q !! 0,

where q is prime, with the confusion-inducing hypothesis [q] /∈ Supp q.
From the confusing hypothesis, there is an element b of B that vanishes on

Supp q but doesn’t vanish at [q]. Translation: (i) b lies in all the primes of Supp q,
but (ii) b /∈ q. Then from (i) there is some power bn of b that annihilates all
elements of q (Exercise 6.5.C). From (ii), bn /∈ q.

Then Ann(bn) contains q from (i), but does not contain any element of B \ q
from (ii), so Ann(bn) = q. hence q is an associated prime of B, which (unwinding
our argument) shows that p is an associated prime of M. !

6.5.22. Minimal primes are associated.

6.5.M. EXERCISE: MINIMAL PRIMES (“IRREDUCIBLE COMPONENTS”) ARE ASSOCI-
ATED. Suppose M is a finitely generated module over Noetherian A, and p ⊂ A
is a prime ideal corresponding to an irreducible component of SuppM ⊂ SpecA.
Show that [p] ∈ AssM. Hint: Exercise 6.5.J and Proposition 6.5.21.

6.5.23. Non-Noetherian Remark. By combining Proposition 6.5.13 with Exercise 6.5.M,
we see that if A is a Noetherian ring, then any element of any minimal prime p is
a zerodivisor. This is true without Noetherian hypotheses: suppose s ∈ p. Then
by minimality of p, pAp is the unique prime ideal in Ap, so the element s/1 of
Ap is nilpotent (because it is contained in all prime ideals of Ap, Theorem 3.2.13).
Thus for some t ∈ A \ p, tsn = 0, so s is a zerodivisor in A. We will use this in
Exercise 12.1.G.

6.5.24. Proposition. — Suppose M is a finitely generated module over a Noetherian
ring A. Then SuppM = AssM.

Proof. Combine Exercises 6.5.G and 6.5.M. !

6.5.N. EXERCISE. Suppose A is a Noetherian ring. Show that the locus of points
[p] where Ap is nonreduced is the support of the nilradical SuppN. Hence show
that the “reduced locus” of a locally Noetherian scheme is open.
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The following justifies a simple way of thinking about associated primes of a
ring.

6.5.O. EXERCISE. Show that a prime ideal p ⊂ A is an associated prime of A if
and only if there is f ∈ A such that Supp f = V(p) = [p].

6.5.P. EXERCISE, PROMISED IN REMARK 6.5.19. Show that for each quotient in the
filtration (6.5.17.1) of M, SuppA/pi = [p] ⊂ SuppM, and that every pi contains a
minimal prime, and hence an associated prime.

6.5.25. “Support” and “associated points” commute with localization.
Suppose S is a multiplicative subset of A, and p ⊂ A is a prime ideal not

meeting S, so (abusing notation slightly) [p] ∈ Spec S−1A ⊂ SpecA (§3.2.9).

6.5.Q. EXERCISE (Supp COMMUTES WITH LOCALIZATION). Show that for any
A-module M, SuppA M ∩ Spec S−1A = SuppS−1A S−1M.

6.5.26. Proposition (Ass commutes with localization). — For an A-module M, we
have AssA M ∩ Spec S−1A = AssS−1A S−1M.

Proof. We first show that AssA M ∩ SpecS−1A ⊂ AssS−1A S−1M. If p ∈ AssA M,
then we have an injection A/p ↪→M. Localizing by S (which preserves injectivity),
we have (S−1A)/(S−1p) ↪→M. (Where did we use p ∈ SpecS−1A?)

We next show that AssS−1A S−1M ⊂ AssA M ∩ SpecS−1A. Suppose q :=
S−1p ∈ AssS−1A S−1M, so q = AnnS−1A(m/s), for some s ∈ S, and m ∈ M.
Since the elements of S are units in S−1A, we have that q = AnnS−1A m. As
support commutes with localization, V(p) must be an irreducible component of
Suppm (as Suppm∩ SpecS−1M contains [q], but no generizations of [q]). Then by
Exercise 6.5.M, p is an associated prime of M. !

6.5.27. Embedded points/primes.

6.5.28. Definition. The associated points that are not the generic points of irre-
ducible components of SuppM are called embedded points, and their correspond-
ing primes are called embedded primes. For example, the scheme of Figure 6.1
has three embedded primes.

6.5.29. Remark. Exercise 6.5.E translates to “hypersurfaces in An
k have no embed-

ded points”. More generally, if A is a unique factorization domain, then SpecA/(f)
has no embedded points for any f ∈ A. Generalizing in a different direction, we
will see that “complete intersections have no embedded points” in §29.2.7.

6.5.R. EXERCISE. Suppose A is a reduced ring (i.e., A has no nonzero nilpotents).
Show that SpecA has no embedded primes. (Hints: if p = Anna is an embed-
ded prime, show that you can find an element b of p not contained in any of the
minimal primes of A. From ab = 0, show that a is contained in all the minimal
primes. Show that a vanishes at all points of SpecA, and hence by Theorem 3.2.13
is nilpotent.)

Thus reduced rings have no embedded primes. Even better: the only elements of a
ring that an embedded prime can annihilate are nilpotents.
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6.5.30. Remark. The converse to Exercise 6.5.R is false. Rings without embedded
primes can still have nilpotents — witness k[x]/(x2).

6.5.S. EXERCISE. Show that if p is an embedded prime of a ring A, then Ap is
nonreduced.

6.5.31. Get your hands dirty: Explicit algebraic exercises.

6.5.T. EXERCISE. (See Figure 4.4.) Suppose f is a function on Spec k[x, y]/(y2, xy),
i.e., f ∈ k[x, y]/(y2, xy). Show that Supp f is either the empty set, or the origin, or
the entire space. Hence find the associated points of Speck[x, y]/(y2, xy).

6.5.U. EXERCISE (CONTINUING THE PREVIOUS EXERCISE). Show explicitly by
hand that f ∈ k[x, y]/(y2, xy) is a zerodivisor if and only if f(0, 0) = 0.

6.5.V. EXERCISE (PRACTICE WITH FUZZY PICTURES). Suppose X = SpecC[x, y]/I,
and that the associated points of X are [(y−x2)], [(x−1, y−1)], and [(x−2, y−2)].
(a) Sketch X as a subset of A2

C = SpecC[x, y], including fuzz.
(b) Do you have enough information to know if X is reduced?
(c) Do you have enough information to know if x + y − 2 is a zerodivisor? How
about x + y − 3? How about y − x2? (Exercise 6.5.W will verify that such an X
actually exists.)

6.5.W. EXERCISE. Let I = (y − x2)3 ∩ (x − 1, y − 1)15 ∩ (x − 2, y − 2). Show that
X = SpecC[x, y]/I satisfies the hypotheses of Exercise 6.5.V. (Rhetorical question:
Is there a “smaller” example? Is there a “smallest”?)

6.5.32. Geometric definitions.

6.5.X. EXERCISE/DEFINITION. Define the associated points of a locally Noether-
ian scheme. (Idea/hint: do it affine-locally.)

6.5.Y. EXERCISE. Suppose X is a locally Noetherian scheme, and U ⊂ X is an open
subscheme. Show that the natural map

(6.5.32.1) Γ(U,OX) !!
∏

p∈Ass X∩U OX,p

(cf. (6.5.11.1)) is an injection.

6.5.33. Generalizing the fraction field: the total fraction ring.

6.5.34. Definitions: Rational functions on locally Noetherian schemes. A rational func-
tion on a locally Noetherian scheme is an element of the image of Γ(U,OU) in
(6.5.32.1) for some U containing all the associated points. Equivalently, the set of
rational functions is the colimit of OX(U) over all open sets containing the associ-
ated points.

For example, on Speck[x, y]/(y2, xy) (Figure 4.4), x−2
(x−1)(x−3) is a rational func-

tion, but x−2
x(x−1) is not.

A rational function has a maximal domain of definition, because any two
actual functions on an open set (i.e., sections of the structure sheaf over that open
set) that agree as “rational functions” (i.e., on small enough open sets containing
associated points) must be the same function, by the injectivity of (6.5.32.1). We say
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that a rational function f is regular at a point p if p is contained in this maximal
domain of definition (or equivalently, if there is some open set containing p where
f is defined). For example, on Speck[x, y]/(y2, xy), the rational function x−2

(x−1)(x−3)

has domain of definition consisting of everything but 1 and 3 (i.e., [(x − 1)] and
[(x−3)]), and is regular away from those two points. A rational function is regular
if it is regular at all points. (Unfortunately, “regular” is a regularly overused word
in mathematics, and in algebraic geometry in particular.)

The complement of the domain of definition of a rational function f is called
the indeterminacy locus of f (a phrase we’ll see again in §11.4.3).

The rational functions form a ring, called the total fraction ring or total quo-
tient ring of X. If X = SpecA is affine, then this ring is called the total fraction
(or quotient) ring of A. If X is integral, the total fraction ring is the function field
K(X) — the stalk at the generic point — so this extends our earlier Definition 5.2.I
of K(·).

6.5.Z. EXERCISE. Show that the ring of rational functions on a locally Noetherian
scheme is the colimit of the functions over all open sets containing the associated
points:

colimU:Ass X⊂U O(U).

Slightly better (but slightly different): show that a rational function is the data
of a function f defined on an open set U containing all associated points, where
two such data (U, f) and (U ′, f ′) define the same rational function if and only if
fU∩U ′ = f ′U∩U ′ (cf. 1.4.9). If X is reduced, show that this is the same as requiring
that they are defined on an open set of each of the irreducible components.

6.5.35. Remark: Associated points of integral schemes. In order for some of our discus-
sion elsewhere to make sense in non-Noetherian settings, we note that the notion
of associated points for integral schemes works perfectly, because it works for in-
tegral domains — only the generic point is associated. In particular, the definition
above of rational functions on an integral scheme X agrees with Definition 5.2.I, as
precisely elements of the function field K(X).

6.5.36. !! Aside: Primary ideals and associated primes. Primary decomposition
was introduced by the world chess champion E. Lasker, and axiomatized by world
math champion E. Noether. We won’t need it, but here is the beginning of the story,
for the curious reader. An ideal I ⊂ A in a ring is primary if I &= A, and xy ∈ I

implies either x ∈ I or yn ∈ I for some n > 0. In this case,
√
I is prime, and I

is said to be p-primary. Equivalently, if I ⊂ A then I is p-primary if and only if
A/I has only one associated prime p. If I is an ideal of a Noetherian ring A, then
the associated prime ideals A/I turn out to be precisely the radicals of ideals in
a primary decomposition. See [E, §3.3], for example, for more of this important
story.

6.6 !! Coherent modules over non-Noetherian rings

This section is intended for people who might work with non-Noetherian rings,
or who otherwise might want to understand coherent sheaves in a more general
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