
CHAPTER 28

Cohomology and base change theorems

28.1 Statements and applications

Higher pushforwards are easy to define, but it is hard to get a geometric sense
of what they are, or how they behave. For example, given a morphism π : X → Y,
and a quasicoherent sheaf F on X, you might reasonably hope that the fibers of
Riπ∗F are the cohomologies of F along the fibers. More precisely, givenψ : q→ Y
corresponding to the inclusion of a point (better: ψ : Specκ(q) → Y), yielding the
fibered diagram

(28.1.0.1) Xq
ψ ′

!!

π ′

""

X

π

""
q

ψ !! Y,

one might hope that the morphism

φp
q : ψ∗(Rpπ∗F ) !! Hp(Xq,F |Xq)

(given in Exercise 19.8.C) is an isomorphism. (Note: F |Xq and (ψ ′)∗F are symbols
for the same thing. The first is often preferred, but we sometimes use the second
because we will consider more general ψ and ψ ′.) We could then picture Riπ∗F
as somehow fitting together the cohomology groups of fibers into a coherent sheaf.
(Warning: this is too much to hope for, see Exercise 28.1.A.)

It would also be nice if hp(Xq, (ψ ′)∗F ) was constant, and φp
q put them to-

gether into a nice locally free sheaf (vector bundle) π∗F .
The base change ψ : q → Y should not be special. As long as we are dream-

ing, we may as well hope that in good circumstances, given a Cartesian diagram
(19.8.4.1)

(28.1.0.2) W
ψ ′

!!

π ′

""

X

π

""
Z

ψ !! Y,

the natural morphism

(28.1.0.3) φp
Z : ψ∗(Rpπ∗F )→ Rpπ ′

∗(ψ
′)∗F
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of sheaves on Z (Exercise 19.8.B(a)) is an isomorphism. (In some cases, we can
already address this question. For example, cohomology commutes with flat base
change, Theorem 25.2.8, so the result holds if ψ is flat.

We formalize our dreams into three nice properties that we might wish in this
situation. We will see that they are closely related. Suppose F is a coherent sheaf
on X, π : X→ Y is proper, Y (hence X) is Noetherian, and F is flat over Y.

(a) Given a Cartesian square (28.1.0.1), isφp
q : Rpπ∗F⊗κ(q)→ Hp(Xq,F |Xq)

an isomorphism?
(b) Given a Cartesian square (28.1.0.2), is φp

Z : ψ∗(Rpπ∗F ) → Rpπ ′
∗(ψ

′)∗F
an isomorphism?

(c) Is Rpπ∗F locally free?

We turn first to property (a). The dimension of the left side Rpπ∗F ⊗κ(q) is an
upper semicontinuous function of q ∈ Y by upper semicontinuity of rank of finite
type quasicoherent sheaves (Exercise 14.4.J). The Semicontinuity Theorem states
that the dimension of the right is also upper semicontinuous. More formally:

28.1.1. Semicontinuity Theorem. — Suppose π : X → Y is a proper morphism of
Noetherian schemes, and F is a coherent sheaf on X flat over Y. Then for each p ≥ 0,
the function Y → Z given by q $→ dimκ(q) H

p(Xq,F |Xq) is an upper semicontinuous
function of q ∈ Y.

Translation: ranks of cohomology groups are upper semicontinuous in proper
flat families. (A proof will be given in §28.2.4.)

28.1.2. Example. You may already have seen an example of cohomology groups
jumping, in §25.4.14. Here is a simpler example, albeit not of the structure sheaf.
Let (E, p0) be an elliptic curve over a field k, and consider the projection π : E ×
E → E to the second factor. Let L be the invertible sheaf (line bundle) on E × E
corresponding to the divisor that is the diagonal, minus the section of p0 × E of π
(where p0 ∈ E). Then L |p0

(i.e., L |E×p0
) is trivial, but L |p is non-trivial for any

p &= p0 (as we showed in our study of genus 1 curves, in §20.9). Thus h0(E,L |p)
is 0 in general, but jumps to 1 for p = p0.

28.1.A. EXERCISE. Show that π∗L = 0. Thus we cannot picture π∗L as “gluing
together” h0 of the fibers; in this example, cohomology does not commute with
“base change” or “taking fibers”.

28.1.3. Side Remark. In characteristic 0, the cohomology of O doesn’t jump in
smooth families. Over C, this is because Betti numbers are constant in connected
families, and (22.5.11.1) (from Hodge theory) expresses the Betti constants hk

Betti as
sums (over i + j = k) of upper semicontinuous functions hj(Ωi), so the Hodge
numbers hj(Ωi) must in fact be constant. The general characteristic 0 case can
be reduced to C by an application of the Lefschetz principle (which also arose in
§22.5.9). But ranks of cohomology groups of O for smooth families of varieties can
jump in positive characteristic (see for example [MO70920]). Also, the example
of §25.4.14 shows that the “smoothness” hypothesis cannot be removed.

28.1.4. Grauert’s Theorem. If Rpπ∗F is locally free (property (c)) and φp
q is

an isomorphism (property (a)), then hp(Xq,F |Xq) is clearly locally constant. The
following is a partial converse.
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28.1.5. Grauert’s Theorem. — If π : X→ Y is proper, Y is reduced and locally Noether-
ian, F is a coherent sheaf on X flat over Y, and hp(Xq,F |Xq) is a locally constant func-
tion of q ∈ Y, then Rpπ∗F is locally free, and φp

Z is an isomorphism for all ψ : Z → Y.

In other words, if cohomology groups of fibers have locally constant dimen-
sion (over a reduced base), then they can be fit together to form a vector bundle,
and the fiber of the pushforward is identified with the cohomology of the fiber.
Our dreams at the start of this chapter have come true!

(See §28.2.12 to remove Noetherian hypotheses.)
We further note that if Y is integral, π is proper, and F is a coherent sheaf

on X flat over Y, then by the Semicontinuity Theorem 28.1.1 there is a dense open
subset of Y on which Rpπ∗F is locally free (and on which the fiber of the pth higher
pushforward is the pth cohomology of the fiber).

The following statement is even more magical than Grauert’s Theorem 28.1.5.

28.1.6. Cohomology and Base Change Theorem. — Suppose π is proper, Y is locally
Noetherian, F is coherent over X and flat over Y, and φp

q is surjective. Then the following
hold.

(i) There is an open neighborhood U of q such that for any ψ : Z → U, φp
Z is an

isomorphism. In particular, φp
q is an isomorphism.

(ii) Furthermore,
(a) φp−1

q is surjective (hence an isomorphism by (i)) if and only if
(b) Rpπ∗F is locally free in some open neighborhood of q (or equivalently,

(Rpπ∗F )q is a free OY,q-module, Exercise 14.4.F).
(These then imply that hp(Xr,F |Xr) is constant for r in an open neighborhood
of q.)

(Proofs of Theorems 28.1.5 and 28.1.6 will be given in §28.2. Note in (ii) that
if p = 0, φp−1

q is automatically surjective, as φ−1
q is the zero map. See §28.2.12 to

remove Noetherian hypotheses.)
This is amazing: the hypothesis that φp

q is surjective involves what happens
only over points q of X, with reduced structure, yet it has implications over the
(possibly nonreduced) scheme as a whole! This might remind you of the local
criterion for flatness (Theorem 25.6.2), which indeed is the key technical ingredient
of the proof.

Here are some consequences.

28.1.B. EXERCISE. Use Theorem 28.1.6 to give a second solution to Exercise 25.4.E.
(This is a big weapon to bring to bear on this problem, but it is still enlightening;
your original solution to Exercise 25.4.E may foreshadow the proof of the Coho-
mology and Base Change Theorem 28.1.6.)

28.1.C. EXERCISE. Suppose π : X→ Y is proper, Y is locally Noetherian, and F is a
coherent sheaf on X, flat over Y. Suppose further that Hp(Xq,F |Xq) = 0 for some
q ∈ Y. Show that there is an open neighborhood U of q such that (Rpπ∗F )|U = 0.

28.1.D. EXERCISE. Suppose π : X→ Y is proper, Y is locally Noetherian, and F is
a coherent sheaf on X, flat over Y. Suppose further that Hp(Xq,F |Xq) = 0 for all
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q ∈ Y. Show that the (p− 1)st cohomology commutes with arbitrary base change:
φp−1

Z is an isomorphism for all ψ : Z→ Y.

28.1.E. EXERCISE. Suppose π is proper, Y is locally Noetherian, and F is a coher-
ent sheaf on X flat over Y. Suppose further that Rpπ∗F = 0 for p ≥ p0. Show that
Hp(Xq,F |Xq) = 0 for all q ∈ Y, p ≥ p0.

28.1.F. EXERCISE. Suppose π is proper, Y is locally Noetherian, and F is a coherent
sheaf on X, flat over Y. Suppose further that Y is reduced. Show that there exists
a dense open subset U of Y such that φp

Z is an isomorphism for all ψ : Z → U
and all p. (Hint: find suitable open neighborhoods of the generic points of Y. See
Exercise 25.2.M and the paragraph following it.)

28.1.7. An important class of morphisms: Proper, O-connected morphisms π : X→
Y of locally Noetherian schemes.

If a morphism π : X → Y satisfies the property that the natural map OY →
π∗OX is an isomorphism, we say that π is O-connected. Clearly the notion of O-
connectedness is local on the target, and preserved by composition.

28.1.G. EASY EXERCISE. Show that proper O-connected morphisms of locally
Noetherian schemes are surjective.

28.1.8. We will soon meet Zariski’s Connectedness Lemma 30.5.1, which shows
that proper, O-connected morphisms of locally Noetherian schemes have connected
fibers. In some sense, this class of morphisms is really the right class of morphisms
capturing what we might want by “connected fibers”; this is the motivation for the
terminology. The following result gives some evidence for this point of view, in
the flat context.

28.1.H. IMPORTANT EXERCISE. Suppose π : X → Y is a proper flat morphism of
locally Noetherian schemes, whose fibers satisfy h0(Xq,OXq) = 1. (Important re-
mark: this is satisfied if π has geometrically connected and geometrically reduced
fibers, by §11.5.7.) Show that π is O-connected. Hint: consider

OY ⊗ κ(q) !! (π∗OX)⊗ κ(q)
φ0

q !! H0(Xq,OXq) ∼= κ(q) .

The composition is surjective, hence φ0
q is surjective, hence it is an isomorphism

by the Cohomology and Base Change Theorem 28.1.6(i). Then by the Cohomology
and Base Change Theorem 28.1.6(ii), π∗OX is locally free, thus of rank 1. Perhaps
use Nakayama’s Lemma to show that a map of invertible sheaves OY → π∗OX that
is an isomorphism on fibers over points (with reduced structure) is necessarily an
isomorphism of sheaves.

28.1.9. ! Unimportant remark. This class of proper, O-connected morphisms is not
preserved by arbitrary base change, and thus is not “reasonable” in the sense of
§8.1. But you can show that they are preserved by flat base change, using the fact
that cohomology commutes with flat base change, Theorem 25.2.8. Furthermore,
the conditions of Exercise 28.1.H behave well under base change, and Noether-
ian hypotheses can be removed from the Cohomology and Base Change Theo-
rem 28.1.6 (at the expense of finitely presented hypotheses, see §28.2.12), so the
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class of morphisms π : X → Y that are proper, finitely presented, and flat, with
geometrically connected and geometrically reduced fibers, is “reasonable” (and
useful).

28.1.10. We next address the following question. Suppose π : X→ Y is a morphism
of schemes. Given an invertible sheaf L on X, we ask when it is the pullback of
an invertible sheaf M on Y. For this to be true, we certainly need that L is trivial
on the fibers. We will see that if π is a proper O-connected morphism of locally
Noetherian schemes, then this often suffices. Given L , we recover M as π∗L ; the
fibers of M are one-dimensional, and glue together to form a line bundle. We now
begin to make this precise.

28.1.I. EXERCISE. Suppose π : X→ Y is a proper, O-connected morphism of locally
Noetherian schemes. Show that if M is any invertible sheaf on Y, then the natural
morphism M → π∗π

∗M is an isomorphism. In particular, we can recover M from
π∗M by applying the pushforward π∗.

28.1.11. Proposition. — Suppose π : X → Y is a flat, proper morphism of locally
Noetherian schemes with geometrically connected and geometrically reduced fibers (hence
O-connected, by Exercise 28.1.H). Suppose also that Y is reduced, and L is an invertible
sheaf on X that is trivial on the fibers of π (i.e., L |Xq is a trivial invertible sheaf on Xq

for all q ∈ Y). Then π∗L is an invertible sheaf on Y (call it M ), and the natural map
π∗M → L is an isomorphism.

Proof. By Grauert’s Theorem 28.1.5, π∗L is locally free of rank 1 (again, call it M ),
and M ⊗OY κ(q) → H0(Xq,L |Xq) is an isomorphism. We have a natural map
of invertible sheaves π∗M = π∗π∗L → L . To show that it is an isomorphism,
we need only show that it is surjective. (Do you see why? If A is a ring, and
φ : A → A is a surjection of A-modules, why is φ an isomorphism?) For this, it
suffices to show that it is surjective on the fibers of π. (Do you see why? Hint:
if the cokernel of the map is not 0, then it is not 0 above some point of Y.) But
this follows from the first line of the proof (using for example that M ∼= O in a
neighborhood of q). !

Proposition 28.1.11 has some pleasant consequences. For example, if you have
two invertible sheaves A and B on X that are isomorphic on every fiber of π, then
they differ by a pullback of an invertible sheaf on Y: just apply Proposition 28.1.11
to A ⊗ B∨.

28.1.12. Projective bundles.

28.1.J. EXERCISE. Let X be a locally Noetherian scheme, and let pr1 : X× Pn → X
be the projection onto the first factor. Suppose L is a line bundle on X × Pn,
whose degree on every fiber of pr1 is zero. Use the Cohomology and Base Change
Theorem 28.1.6 to show that (pr1)∗L is an invertible sheaf on X. Show that the
natural map pr∗1((pr1)∗L ) → L is an isomorphism, as at the end of proof of
Proposition 28.1.11.

Your argument will apply just as well to the situation where pr1 : X× Pn → X
is replaced by a Pn-bundle over X, pr1 : Z→ X; or by pr1 : Z→ X which is a proper
smooth morphism whose geometric fibers are integral curves of genus 0.
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Furthermore, the locally Noetherian hypotheses can be removed, see §28.2.12.

28.1.K. EXERCISE. Suppose X is a connected Noetherian scheme. Show that
Pic(X × Pn) ∼= PicX × Z. Hint: the map PicX × PicPn → Pic(X × Pn) is given by
(L ,O(m)) $→ pr∗1L ⊗ pr∗2O(m), where pr1 : X × Pn → X and pr2 : X × Pn → Pn

are the projections from X×Pn to its factors. (The notation " is often used for this
construction, see §17.4.9.)

A very similar argument will show that if Z is a Pn-bundle over X, then PicZ ∼=
PicX× Z. You will undoubtedly also be able to figure out the right statement if X
is not connected.

28.1.13. Remark. As mentioned in §20.10.1, the Picard group of a scheme often
“wants to be a scheme”. You may be able to make this precise in the case of PicPn

Z .
In this case, the scheme PicPn

Z is “Z copies of SpecZ”, with the “obvious” group
scheme structure. Can you figure out what functor it represents? Can you show
that it represents this functor? This will require extending Exercise 28.1.K out of
the Noetherian setting, using §28.2.12.

28.1.L. EXERCISE. Suppose π : X → Y is a projective flat morphism over a Noe-
therian integral scheme, all of whose geometric fibers are isomorphic to Pn (over
the appropriate field). Show that π is a projective bundle if and only if there is
an invertible sheaf L on X that restricts to O(1) on all the geometric fibers. (One
direction is clear: if it is a projective bundle, then it has a O(1) which comes from
the projectivization, see Exercise 18.2.D. In the other direction, the candidate vec-
tor bundle is π∗L . Show that it is indeed a locally free sheaf of the desired rank.
Show that its projectivization is indeed π : X→ Y.)

Caution: the map π : ProjR[x, y, z]/(x2+y2+ z2)→ SpecR shows that not ev-
ery projective flat morphism over a Noetherian integral scheme, all of whose geo-
metric fibers are isomorphic to Pn, is necessarily a Pn-bundle. However, Tsen’s The-
orem implies that if the target is a smooth curve over an algebraically closed field, then
the morphism is a Pn-bundle (see [GS, Thm. 6.2.8]). Example 19.4.7 shows that
“curve” cannot be replaced by “5-fold” in this statement — the “universal smooth
plane conic” is not a P1-bundle over the parameter space U ⊂ P5 of smooth plane
conics. If you wish, you can extend Example 19.4.7 to show that “curve” cannot
even be replaced by “surface”. (Just replace the P5 of all conics with a generally
chosen P2 of conics — but then figure out what goes wrong if you try to replace it
with a generally chosen P1 of conics.)

28.1.M. EXERCISE. Suppose π : X→ Y is the projectivization of a vector bundle F
over a locally Noetherian scheme (i.e., X ∼= Proj Sym• F ). Recall from §18.2.3 that
for any invertible sheaf L on Y, X ∼= Proj Sym•(F ⊗ L )). Show that these are the
only ways in which it is the projectivization of a vector bundle. (Hint: recover F
by pushing forward O(1).)

28.1.14. The Hodge bundle.

28.1.N. EXERCISE (THE HODGE BUNDLE). Suppose π : X→ Y is a flat proper mor-
phism of locally Noetherian schemes, and the fibers of π are regular irreducible
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curves of genus g. (By Theorem 26.2.2 it is a smooth morphism of relative dimen-
sion 1, and ΩX/Y is a line bundle.) Show that π∗ΩX/Y is a locally free sheaf on
Y of rank g, and that the construction of π commutes with base change: given a
Cartesian square

(28.1.14.1) X ′ ψ ′
!!

π ′

""

X

π

""
Y ′ ψ !! Y,

there is a canonical isomorphism
(
π ′
∗ΩX ′/Y ′

) ∼←→ ψ∗ (π∗ΩX/Y

)
.

(The locally free sheaf π∗ΩX/Y is called the Hodge bundle.) Hint: use the Coho-
mology and Base Change Theorem 28.1.6 twice, once with p = 2, and once with
p = 1.

28.2 ! Proofs of cohomology and base change theorems

The key to proving the Semicontinuity Theorem 28.1.1, Grauert’s Theorem 28.1.5,
and the Cohomology and Base Change Theorem 28.1.6 is the following wonderful
idea of Mumford (see [Mu3, p. 47 Lem. 1]). It turns questions of pushforwards
(and how they behave under arbitrary base change) into something computable
with vector bundles (hence questions of linear algebra). After stating it, we will
interpret it.

28.2.1. Key Theorem. — Suppose π : X → SpecB is a proper morphism, and F is a
coherent sheaf on X, flat over SpecB, where B is Noetherian. Then there is a complex

(28.2.1.1) · · · δ−2
!! K−1 δ−1

!! K0 δ0 !! K1 δ1 !! · · · !! Kn δr !! 0

of finitely generated free B-modules and an isomorphism of functors

(28.2.1.2) Hp(X×B A,F ⊗B A)
∼←→ Hp(K• ⊗B A)

for all p, for all ring maps B→ A. (Here A needn’t be Noetherian.)

Because (28.2.1.1) is a complex of free B-modules, all of the information is con-
tained in the maps, which are matrices with entries in B. This will turn questions
about cohomology (and base change) into questions about linear algebra. For ex-
ample, semicontinuity will turn into the fact that ranks of matrices (with functions
as entries) drop on closed subsets (§12.4.4(ii)).

Although the complex (28.2.1.1) is infinite, by (28.2.1.2) it has no cohomology
in negative degree, even after any ring extension B→ A (as the left side of (28.2.1.2)
is 0 for p < 0).

The idea behind the proof is as follows: take the Čech complex, produce a
complex of finite rank free modules mapping to it “with the same cohomology” (a
quasiisomorphic complex, §19.2.3). We first construct the complex so that (28.2.1.2)
holds for B = A in the next lemma, and then show the same complex works for
general A, in Lemma 28.2.3 immediately thereafter.
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28.2.2. Lemma. — Let B be a Noetherian ring. Suppose C• is a complex of B-modules
such that Hi(C•) are finitely generated B-modules, and such that Cp = 0 for p > n. Then
there exists a complex K• of finite rank free B-modules such that Kp = 0 for p > n, and a
homomorphism of complexes α : K• → C• such that α induces isomorphisms Hi(K•)

∼−→
Hi(C•) for all i.

Proof. We build this complex inductively. (This may remind you of Hint 24.3.3.)
Assume we have defined (Kp,αp, δp) for p ≥ m+ 1 (as in (28.2.2.1)) such that the
squares commute, and the top row is a complex, and αq defines an isomorphism
of cohomology Hq(K•) → Hq(C•) for q ≥ m + 2 and a surjection ker(δm+1) →
Hm+1(C•), and the Kp are finite rank free B-modules. (Our base case is m = p:
take Kn = 0 for n > p.)

(28.2.2.1) Km+1 δm+1
!!

αm+1

""

Km+2 δ
m+2

!!

αm+2

""

· · ·

· · · !! Cm−1

εm−1

!! Cm

εm
!! Cm+1

εm+1

!! Cm+2 !! · · · .

We construct (Km, δm,αm). Choose generators of Hm(C•), say c1, . . . , cM. Let

Dm+1 := ker
(

ker(δm+1)
αm+1

−→ Hm+1(C•)

)
.

Choose generators of Dm+1, say d1, . . . , dN. (This is where we use the Noether-
ian hypotheses — to ensure this kernel Dm+1 is finitely generated.) Let Km =
B⊕(M+N). Define δm : Km → Km+1 by sending the last N generators to d1, . . . , dN,
and the first M generators to 0. Define αm by sending the first M generators of
B⊕(M+N) to (lifts of) c1, . . . , cM, and sending the last N generators to arbitrarily
chosen lifts of the αm+1(di) (as the αm+1(di) are 0 in Hm+1(C•), and thus lie in
the image of εm), so the square (with upper left corner Km) commutes. Then by
construction, we have completed our inductive step:

Km

αm

""

δm !! Km+1 δm+1
!!

αm+1

""

Km+2 !!

αm+2

""

· · ·

· · · !! Cm−1

εm−1

!! Cm

εm
!! Cm+1

εm+1

!! Cm+2 !! · · · .

!

28.2.3. Lemma. — Suppose α : K• → C• is a morphism of complexes of flat B-modules,
bounded on the right (i.e., Kn = Cn = 0 for n ) 0), inducing isomorphisms of coho-
mology (a quasiisomorphism, §19.2.3). Then “this quasiisomorphism commutes with arbi-
trary change of base ring”: for every B-algebra A, the maps Hp(K•⊗BA)→ Hp(C•⊗BA)
are isomorphisms.

Proof. The mapping cone M• of α : K• → C• is exact by Exercise 1.7.E. Then M•⊗B

A is still exact, by Exercise 25.3.F. But M• ⊗B A is the mapping cone of

α⊗B A : K• ⊗B A→ C• ⊗B A,
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so by Exercise 1.7.E, α ⊗B A induces an isomorphism of cohomology (i.e., is a
quasiisomorphism) too. !
Proof of Key Theorem 28.2.1. Choose a finite affine covering of X. Take the Čech com-
plex C• for F with respect to this cover. Recall that Grothendieck’s Coherence The-
orem 19.9.1 (which had Noetherian hypotheses) showed that the cohomology of
F is coherent. (Theorem 19.9.1 required serious work. If you need Theorem 28.2.1
only in the projective case, the analogous statement with projective hypotheses,
Theorem 19.8.1(d), was much easier.) Apply Lemma 28.2.2 to get the nicer vari-
ant K• of the same complex C•. By Lemma 28.2.3, if we tensor with A and take
cohomology, we get the same answer whether we use K• or C•. !

We now use Theorem 28.2.1 to prove some of the fundamental results stated
earlier: the Semicontinuity Theorem 28.1.1, Grauert’s Theorem 28.1.5, and the Co-
homology and Base Change Theorem 28.1.6. In the course of proving Semiconti-
nuity, we will give a new proof of Theorem 25.7.1, that Euler characteristics are
locally constant in flat families (that applies more generally in proper situations).

28.2.4. Proof of the Semicontinuity Theorem 28.1.1. The result is local on Y, so
we may assume Y is affine. Let K• be a complex as in Key Theorem 28.2.1.

Then for q ∈ Y,

dimκ(q) H
p(Xq,F |Xq) = dimκ(q) ker(δp ⊗B κ(q))− dimκ(q) im(δp−1 ⊗B κ(q))

= dimκ(q)(K
p ⊗B κ(q))− dimκ(q) im(δp ⊗B κ(q))

− dimκ(q) im(δp−1 ⊗B κ(q))(28.2.4.1)

Now dimκ(q) im(δp⊗Bκ(q)) is a lower semicontinuous function on Y. (Reason:
the locus where the dimension is less than some number N is obtained by setting
all N × N minors of the matrix Kp → Kp+1 to 0; cf. §12.4.4(ii)).) The same is true
for dimκ(q) im(δp−1 ⊗B κ(q)). The result follows. !

28.2.5. A new proof (and extension to the proper case) of Theorem 25.7.1 that
Euler characteristics of flat sheaves are locally constant.

If K• were finite “on the left” as well — if Kp = 0 for p * 0 — then we
would have a short proof of Theorem 25.7.1. By taking alternating sums (over p)
of (28.2.4.1), we would have that

χ(Xq,F |Xq) =
∑

(−1)php(Xq,F |Xq) =
∑

(−1)p rankKp,

which is locally constant. The only problem is that the sums are infinite. We patch
this problem by truncating the complex K• below where there is cohomology. De-
fine J• by Jp = Kp for p ≥ 0, Jp = 0 for p < −1, and J−1 := ker(K−1 → K0). Then
J• is a complex in the obvious way, and the map of complexes K• → C• clearly
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factors through J•:

· · · !! J−3 !! J−2 !! J−1 !! J0 !! J1 !! J2 !! · · ·

· · · !! 0 !!

∼

""

0 !!

∼

""

ker(K−1 → K0) !!

""

K0 !!

""

K1 !!

""

K2 !!

""

· · ·

· · · !! 0 !! 0 !! 0 !! C0 !! C1 !! C2 !! · · ·
Clearly J• → C• induces an isomorphism on cohomology (recall both have 0 coho-
mology for p < 0).

Now J−1 (the kernel of a map of coherent modules) is coherent. Consider the
mapping cone M• of β : J• → C•:

0→ J−1 → C−1 ⊕ J0 → C0 ⊕ J1 → · · ·→ Cn−1 ⊕ Jn → Cn → 0.

From Exercise 1.7.E, as J• → C• induces an isomorphism on cohomology, the map-
ping cone has no cohomology — it is exact. All terms in it are flat except possibly
J−1 (the Cp are flat by assumption, and Ji is free for i &= −1). Hence J−1 is flat
too, by Exercise 25.3.G. But flat coherent sheaves are locally free (Corollary 25.4.7).
Then Theorem 25.7.1 follows from

χ(Xq,F |Xq) =
∑

(−1)php(Xq,F |Xq) =
∑

(−1)p rank Jp.

!

28.2.6. Proof of Grauert’s Theorem 28.1.5 and the Cohomology and Base Change
Theorem 28.1.6 (following Eric Larson).

(!! Experts: You might see in the proof that what makes pth cohomology com-
mute with base change is that the complex of Key Theorem 28.2.1 can be “broken”
into two complexes at the pth step. You might even want to interpret this in terms
of the Čech complex as an object of the derived category of B-modules.)

Thanks to Theorem 28.2.1, Theorems 28.1.5 and 28.1.6 are now statements
about a complex of free modules over a Noetherian ring.

28.2.7. Definition. Suppose φ : E → F is a morphism of finite rank locally free
sheaves on a scheme X. (More precisely: E and E are finite rank locally free
sheaves, and φ : E → F is a morphism of quasicoherent sheaves.) We say φ is
strongly of constant rank a if for every point p ∈ X, there are integers b and c,
and there is an open neighborhood U of p with a commutative diagram

E |U##

∼
""

φ !! F |U##

∼
""

O⊕(a+b)
U

!! O⊕a
U

!! O⊕(a+c)
U

where the map O⊕(a+b)
U → O⊕a

U is projection to the first a summands, and the map
O⊕a

U → O⊕(a+c)
U is inclusion as the first a summands. We say that φ is strongly of

constant rank if near every point p ∈ X, φ is strongly of constant rank a for some
a.
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28.2.8. Important but straightforward observations. (i) The notion “strongly of con-
stant rank a” commutes with any base change Y → X. (ii) The quasicoherent
sheaves kerφ, imφ, and cokerφ are locally free (of finite rank b, a, and c respec-
tively), and their construction commutes with any base change Y → X.

0 !! kerφ !!
##

∼

""

E##

∼
""

φ !! F##

∼
""

!! cokerφ
##

∼

""

!! 0

0 !! O⊕b
U

!! O⊕(a+b)
U

!! O⊕(a+c)
U

!! O⊕c
U

!! 0

(iii) If φ : E → F is strongly of constant rank a, then at any point p ∈ X, the rank
of φ|p : Ep → |p is a.

In the next exercises we give three criteria for when a morphism φ of finite
rank locally free sheaves is strongly of constant rank.

28.2.A. EXERCISE. Suppose φ : E → F is a morphism of finite rank locally free
sheaves. Show that φ is strongly of constant rank a if and only if cokerφ is locally
free of rank a.

28.2.B. EXERCISE. Suppose X is reduced, and φ : E → F is a morphism of finite
rank locally free sheaves. Show that φ is strongly of constant rank a if and only if
φ|p : E |p → F |p is rank a for all points p ∈ X. (Hint: use the previous exercise,
and Exercise 14.4.K.)

28.2.C. EXERCISE. Suppose φ : E → F is a morphism of finite rank locally free
sheaves, and p ∈ X. Show that the natural map (kerφ)|p → ker(φ|p) is surjective
if and only if φ is strongly of constant rank in some neighborhood of p.

28.2.9. Proof of Grauert’s Theorem 28.1.5. By hypothesis, hp(Xq,F |Xq) is a
locally constant function of q ∈ Y. From (28.2.4.1), hp(Xq,F |Xq) = rankKp −
rank im(δp|q) − rank im(δp−1|q). But rankKp is constant, and rank im(δp|q) and
rank im(δp−1|q) are lower semicontinuous, so in fact rank im(δp|q) and rank im(δp−1|q)
must be locally constant. By Exercise 28.2.B, both δp−1 and δp are strongly of con-
stant rank. Then by Observation 28.2.8(ii) coker δp−1 and im δp are both locally
free (of finite rank). In the short exact sequence

(28.2.9.1) 0→ Hp(K•)→ coker δp−1 → im δp → 0

(Exercise 1.6.5.4, the “dual” definition of cohomology), both coker δp−1 and im δp

correspond to finite rank locally free sheaves. Thus Hp(K•) does as well, by Exer-
cise 14.0.F(a).

28.2.D. EXERCISE. Show (perhaps using (28.2.9.1)) that the construction of Hp(K•)
commutes with any base change, thereby completing the proof of Grauert’s Theo-
rem 28.1.5. !

In order to prove the Cohomology and Base Change Theorem 28.1.6, we need
a preliminary result.
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28.2.10. Lemma. — Suppose

Kp−1

""""

δp−1
K !! Kp

""

δpK !! Kp+1

""
Jp−1

δp−1
J !! Jp

δpJ !! Jp+1

is a map of complexes, with the left vertical arrow surjective. Then Hp(K•) → Hp(J•) is
surjective if and only if ker δpK → ker δpJ is surjective.

Proof. The map im δp−1
K → im δp−1

J is surjective: any element α of im δp−1
J lifts

to Jp−1, then can lift to Kp−1, which then can map to Kp, which maps to α. Then
apply the Snake Lemma 1.7.5 to

0 !! im δp−1
K

""""

!! ker δpK

""

!! Hp(K•) !!

""

0

0 !! im δp−1
J

!! ker δpJ !! Hp(J•) !! 0.

!

28.2.11. Proof of the Cohomology and Base Change Theorem 28.1.6. We focus
on the complex near the pth step, and its restriction to the point q ∈ X:

Kp−1

""

!! Kp δp !!

""

Kp+1

""

free B-modules

Kp−1 ⊗B κ(q) !! Kp ⊗B κ(q)
δp⊗κ(q)!! Kp+1 ⊗B κ(q)

By hypothesis, φp
q : (Rpπ∗F )|q → Hp(Xq,F |Xq) is surjective. By Lemma 28.2.10,

this is equivalent to (ker δp) ⊗ κ(q) → ker(δp ⊗ κ(q)) being surjective. By Exer-
cise 28.2.C, this is equivalent to δp being strongly of constant rank near q, which
implies (by Observation 28.2.8(ii)) that ker δp is finite rank locally free, and the
construction of ker δp commutes with any base change in a neighborhood of q.

Now Hp(K•) = coker(Kp−1 → ker δp), i.e., we have

Kp−1 !! ker δp !! Hp(K•) !! 0.

Thus Hp(K•) commutes with any base change (as tensor product is right exact).
This completes the proof of part (i) of the Theorem.

For part (ii), consider again the map Kp−1 → ker δp of finite rank locally free
sheaves, whose cokernel is Hp(K•). Now Hp(K•) is locally free if and only if
Kp−1 → ker δp is strongly of constant rank, if and only if (since δp is strongly
of constant rank) δp−1 is strongly of constant rank, if and only if Hp−1(K•) →
Hp−1(K•|q) is surjective. This completes the proof of part (ii). !

28.2.12. ! Removing Noetherian conditions.
It can be helpful to have versions of the theorems of §28.1 without Noetherian

conditions; important examples come from moduli theory, and will be discussed
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in the next section. Noetherian conditions can often be exchanged for finite pre-
sentation conditions. We begin with an extension of Exercise 10.3.H.

28.2.E. EXERCISE. Suppose π : X → SpecB is a finitely presented morphism, and
F is a finitely presented sheaf on X. Show that there exists a base change diagram
of the form

(28.2.12.1) F F ′

X

π

""

σ !! X ′

π ′

""
SpecB

ρ !! SpecZ[x1, . . . , xN]/I

where N is some integer, I ⊂ Z[x1, . . . , xN], and π ′ is finitely presented (= finite
type as the target is Noetherian, see §8.3.13), and a finitely presented (= coherent)
quasicoherent sheaf F ′ on X ′ with F ∼= σ∗F ′.

28.2.13. Properties of π ′. (The ideal I appears in the statement of Exercise 28.2.E
not because it is needed there, but to make the statement of this remark correct.)
If π is proper, then diagram (28.2.12.1) can be constructed so that π ′ is also proper
(using [Gr-EGA, IV3.8.10.5]). Furthermore, if F is flat over SpecB, then (28.2.12.1)
can be constructed so that F ′ is flat over SpecZ[x1, . . . , xN]/I (using [Gr-EGA,
IV3.11.2.6]). This requires significantly more work.

28.2.F. EXERCISE. Assuming the results stated in §28.2.13, prove the following re-
sults, with the “locally Noetherian” hypotheses removed, and “finite presentation”
hypotheses added:

(a) the constancy of Euler characteristic in flat families (Theorem 25.7.1, ex-
tended to the proper case as in §28.2.5);

(b) the Semicontinuity Theorem 28.1.1;
(c) Grauert’s Theorem 28.1.5 (you will have to show that Z[x1, . . . , xN]/I in

(28.2.12.1) can be taken to be reduced); and
(d) the Cohomology and Base Change Theorem 28.1.6.

28.2.14. Necessity of finite presentation conditions. The finite presentation conditions
are necessary. There is a projective flat morphism to a connected target where the
fiber dimension jumps. There is a finite flat morphism where the degree of the
fiber is not locally constant. There is a projective flat morphism to a connected
target where the fibers are curves, and the arithmetic genus is not constant. See
[Stacks, tag 05LB] for the first example; the other two use the same idea.

28.3 Applying cohomology and base change to moduli problems

The theory of moduli relies on ideas of cohomology and base change. We
explore this by examining two special cases of one of the primordial moduli spaces,
the Hilbert scheme: the Grassmannian, and the fact that degree d hypersurfaces in
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projective space are “parametrized” by another projective space (corresponding to
degree d polynomials, see Remark 4.5.3).

As suggested in §25.1, the Hilbert functor HilbY Pn of Pn
Y parametrizes finitely

presented closed subschemes of Pn
Y , where Y is an arbitrary scheme. More pre-

cisely, it is a contravariant functor sending the Y-scheme X to the set of finitely pre-
sented closed subschemes of X ×Y Pn

Y = Pn
X flat over X (and sending morphisms

X1 → X2 to pullbacks of flat families). An early achievement of Grothendieck
was the construction of the Hilbert scheme, which can then be cleverly used to
construct many other moduli spaces.

28.3.1. Theorem (Grothendieck). — HilbZ Pn is representable by a scheme locally of
finite type.

(Grothendieck’s original argument is in [Gr5]. A readable construction is
given in [Mu2], and in [FGIKNV, Ch. 5].)

28.3.A. EASY EXERCISE. Assuming Theorem 28.3.1, show that HilbY Pn is repre-
sentable, by showing that it is represented by HilbZ Pn×Z Y. Thus the general case
follows from the “universal” case of Y = Z.

28.3.B. EXERCISE. Assuming Theorem 28.3.1, show that HilbZ Pn is the disjoint
union of schemes Hilbp(m)

Z Pn, each one corresponding to finitely presented closed
subschemes of Pn

Z whose fibers have fixed Hilbert polynomial p(m). Hint: Corol-
lary 25.7.2.

28.3.2. Theorem (Grothendieck). — Each Hilbp(m)
Z Pn is projective over Z.

In order to get some feeling for the Hilbert scheme, we discuss two important
examples, without relying on Theorem 28.3.1.

28.3.3. The Grassmannian.
We have defined the Grassmannian G(k, n) twice before, in §7.7 and §17.7.

The second time involved showing the representability of a (contravariant) functor
(from Sheaves to Sets), of rank k locally free quotient sheaves of a rank n free sheaf.

We now consider a parameter space for a more geometric problem. The space
will again be G(k, n), but because we won’t immediately know this, we invent
some temporary notation. Let G ′(k, n) be the contravariant functor (from Schemes
to Sets) which assigns to a scheme B the set of finitely presented closed subschemes
of Pn−1

B , flat over B, whose fiber over any point b ∈ B is a (linearly embedded)
Pk−1
κ(b) in Pn−1

κ(b):

(28.3.3.1) X

flat, f. pr.
""

! " cl. subscheme !! Pn−1
B

π

$$!!!
!!!

!!!
!!!

!

B

(This describes the map to Sets; you should think through how pullback makes
this into a contravariant functor.)

28.3.4. Theorem. — The functor G ′(k, n) is represented by G(k, n).
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Translation: there is a natural bijection between diagrams of the form (28.3.3.1)
(where the fibers are Pk−1’s) and diagrams of the form (17.7.0.1) (the diagrams that
G(k, n) parametrizes, or represents).

One direction is notably easier. Suppose we are given a diagram of the form
(17.7.0.1) over a scheme B,

(28.3.4.1) O⊕n
B

!! !! Q,

where Q is locally free of rank k. Applying Proj
B

to the Sym• construction on both
O⊕n

B and Q, we obtain a closed embedding

(28.3.4.2) Proj
B
(Sym• Q) !

"
!!

%%"
""

""
""

""
""

Proj
B

(
Sym• O⊕n

B

)

&&!!!
!!!

!!!
!!!

= Pn−1 × B

B

(as, for example, in Exercise 18.2.H).
The fibers are linearly embedded Pk−1’s (as base change, in this case to a point

of B, commutes with the Proj construction, Exercise 18.2.E). Note that Proj (Sym• Q)
is flat and finitely presented over B, as it is a projective bundle. We have con-
structed a diagram of the form (28.3.3.1).

We now need to reverse this. The trick is to produce (28.3.4.1) from our geo-
metric situation (28.3.3.1), and this is where cohomology and base change will be
used.

Given a diagram of the form (28.3.3.1) (where the fibers are Pk−1’s), consider
the closed subscheme exact sequence for X:

0 !! IX
!! OPn−1

B

!! OX
!! 0.

Tensor this with OPn−1
B

(1):

(28.3.4.3) 0 !! IX(1) !! OPn−1
B

(1) !! OX(1) !! 0.

Note that OX(1) restricted to each fiber of π is O(1) on Pk−1 (over the residue
field), for which all higher cohomology vanishes (§19.3).

28.3.C. EXERCISE. Show that Riπ∗OX(1) = 0 for i > 0, and π∗OX(1) is locally free
of rank k. Hint: use the Cohomology and Base Change Theorem 28.1.6. Either use
the non-Noetherian discussion of §28.2.12 (which we haven’t proved), or else just
assume B is locally Noetherian.

28.3.D. EXERCISE. Show that the long exact sequence obtained by applying π∗ to
(28.3.4.3) is just a short exact sequence of locally free sheaves

0 !! π∗IX(1) !! π∗OPn−1
B

(1) !! π∗OX(1) !! 0.

of ranks n − k, n, and k respectively, where the middle term is canonically identi-
fied with O⊕n

B .

The surjection O⊕n
B

!! !! π∗OX(1) is precisely a diagram of the sort we wished
to construct, (17.7.0.1).
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28.3.E. EXERCISE. Close the loop, by using these two “inverse” constructions to
show that G(k, n) represents the functor G ′(k, n).

28.3.5. Hypersurfaces.
Ages ago (in Remark 4.5.3), we informally said that hypersurfaces of degree d

in Pn are parametrized by a P(
n+d

d )−1. We now make this precise. We work over
a base Z for suitable generality. You are welcome to replace Z by a field of your
choice, but by the same argument as in Easy Exercise 28.3.A, all other cases are
obtained from this one by base change.

Define the contravariant functor Hd,n : Sch → Sets from schemes to sets as
follows. To a scheme B, we associated the set of all closed subschemes X ↪→ Pn

B,
flat and finitely presented over B, all of whose fibers are degree d hypersurfaces in
Pn (over the appropriate residue field). To a morphism B1 → B2, we obtain a map
Hd,n(B2)→ Hd,n(B1) by pullback.

28.3.6. Proposition. — The functor Hd,n is represented by P(
n+d

d )−1.

As with the case of the Grassmannian, one direction is easy, and the other
requires cohomology and base change.

28.3.F. EASY EXERCISE. Over P(
n+d

d )−1, described a closed subscheme X ↪→
Pn × P(

n+d
d )−1 that will be the universal hypersurface. Show that X is flat and

finitely presented over P(
n+d

d )−1. (For flatness, you can use the local criterion of
flatness on the source, Exercise 25.6.F, but it is possible to deal with it easily by
working by hand.)

Thus given any morphism B → P(
n+d

d )−1, by pullback, we have a degree d
hypersurface X over B (an element of Hd,n(B)).

Our goal is to reverse this process: from a degree d hypersurface π : X → Pn
B

over B (an element of Hd,n(B)), we want to describe a morphism B→ P(
n+d

d )−1.
Consider the closed subscheme exact sequence for X ↪→ Pn

B, twisted by OPn
B
(d):

(28.3.6.1) 0 !! IX(d) !! OPn
B
(d) !! OX(d) !! 0.

28.3.G. EXERCISE (CF. EXERCISE 28.3.C). Show that the higher pushforwards (by
π) of each term of (28.3.6.1) is 0, and that the long exact sequence of pushforwards
of (28.3.6.1) is

0 !! π∗IX(d) !! π∗OPn
B
(d) !! π∗OX(d) !! 0.

where the middle term is free of rank
(
n+d
d

)
(whose summands can be identified

with degree d monomials in the projective variables x1, . . . , xn (see Exercise 9.3.J),
and the left term π∗IX(d) is locally free of rank 1 (basically, a line bundle).

(It is helpful to interpret the middle term O
⊕(n+d

d )
B as parametrizing homoge-

neous degree d polynomials in n+1 variables, and the rank 1 subsheaf of π∗IX(d)
as “the equation of X”. This will motivate what comes next.)
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Taking the dual of the injection π∗IX(d) ↪→ O
⊕(n+d

d )
B , we have a surjection

O
⊕(n+d

d )
B

!! !! L

from a free sheaf onto an invertible sheaf L = (π∗IX(d))∨, which (by the univer-
sal property of projective space) yields a morphism B→ P(

n+d
d )−1.

28.3.H. EXERCISE. Close the loop: show that these two constructions are inverses,
thereby proving Proposition 28.3.6.

28.3.7. Remark. The proof of the representability of the Hilbert scheme shares a
number of features of our arguments about the Grassmannian and the parameter
space of hypersurfaces.
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